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Abstract

Neural machine translation has become a ma-

jor alternative to widely used phrase-based

statistical machine translation. We notice

however that much of research on neural ma-

chine translation has focused on European

languages despite its language agnostic na-

ture. In this paper, we apply neural ma-

chine translation to the task of Arabic transla-

tion (Ar↔En) and compare it against a stan-

dard phrase-based translation system. We run

extensive comparison using various config-

urations in preprocessing Arabic script and

show that the phrase-based and neural trans-

lation systems perform comparably to each

other and that proper preprocessing of Arabic

script has a similar effect on both of the sys-

tems. We however observe that the neural ma-

chine translation significantly outperform the

phrase-based system on an out-of-domain test

set, making it attractive for real-world deploy-

ment.

1 Introduction

Neural machine translation (Kalchbrenner and Blun-

som, 2013; Sutskever et al., 2014; Cho et al., 2014)

has become a major alternative to the widely used

statistical phrase-based translation system (Koehn et

al., 2003), evidenced by the successful entries in

WMT’15 and WMT’16.

Previous work on using neural networks for Ara-

bic translation has mainly focused on using neural

networks to induce an additional feature for phrase-

based statistical machine translation systems (see,

e.g., (Devlin et al., 2014; Setiawan et al., 2015)).

This hybrid approach has resulted in impressive im-

provement over other systems without any neural

network, which raises a hope that a fully neural

translation system may achieve a even higher trans-

lation quality. We however found no prior work on

applying a fully neural translation system (i.e., neu-

ral machine translation) to Arabic translation.

In this paper, our aim is therefore to present

the first result on the Arabic translation using

neural machine translation. On both directions

(Ar→En and En→Ar), we extensively compare a

vanilla attention-based neural machine translation

system (Bahdanau et al., 2015) against a vanilla

phrase-based system (Moses, (Koehn et al., 2003)),

while varying pre-/post-processing routines, in-

cluding morphology-aware tokenization and ortho-

graphic normalization, which were found to be cru-

cial in Arabic translation (Habash and Sadat, 2006;

Badr et al., 2008; El Kholy and Habash, 2012).

The experiment reveals that neural machine trans-

lation performs comparably to the standard phrase-

based system. We further observe that the tokeniza-

tion and normalization routines, initially proposed

for phrase-based systems, equally improve the trans-

lation quality of neural machine translation. Finally,

on the En→Ar task, we find the neural translation

system to be more robust to the domain shift com-

pared to the phrase-based system.

2 Neural Machine Translation

A major workforce behind neural machine trans-

lation is an attention-based encoder-decoder

model (Bahdanau et al., 2015; Cho et al., 2015).

This attention-based encoder-decoder model

consists of an encoder, decoder and attention mech-

anism. The encoder, which is often implemented

as a bidirectional recurrent network, reads a source
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sentence X = (x1, . . . , xTx
) and returns a set of

context vectors C = (h1, . . . ,hTx
).

The decoder is a recurrent language model. At

each time t′, it computes the new hidden state by

zt′ = φ(zt′−1, ỹt′−1, ct′),

where φ is a recurrent activation function, and zt′−1

and ỹt′−1 are the previous hidden state and previ-

ously decoded target word respectively. ct′ is a

time-dependent context vector and is a weighted

sum of the context vectors returned by the en-

coder: ct′ =
∑

Tx

t=1
αtht, where the attention weight

αt is computed by the attention mechanism fatt:

αt ∝ exp(fatt(zt′−1, ỹt′−1,ht)). In this paper, we

use a feedforward network with a single tanh hid-

den layers to implement fatt.

Given a new decoder state zt′ , the conditional dis-

tribution over the next target symbol is computed as

p(yt = w|ỹ<t, X) ∝ exp(gw(zt′)),

where gw returns a score for the word w, and V is a

target vocabulary.

The entire model, including the encoder, decoder

and attention mechanism, is jointly tuned to max-

imize the conditional log-probability of a ground-

truth translation given a source sentence using a

training corpus of parallel sentence pairs. This learn-

ing process is efficiently done by stochastic gradient

descent with backpropagation.

Subword Symbols Sennrich et al. (2015), Chung

et al. (2016) and Luong and Manning (2016) showed

that the attention-based neural translation model can

perform well when source and target sentences are

represented as sequences of subword symbols such

as characters or frequent character n-grams. This

use of subword symbols elegantly addresses the is-

sue of large target vocabulary in neural networks

(Jean et al., 2014), and has become a de facto stan-

dard in neural machine translation. Therefore, in our

experiments, we use character n-grams selected by

byte pair encoding (Sennrich et al., 2015).

3 Processing of Arabic for Translation

3.1 Characteristics of Arabic Language

Arabic exhibits a rich morphology. This makes Ara-

bic challenging for natural language processing and

machine translation. For instance, a single Arabic

token ‘ é �J J. »Q ÖÏð’ (‘and to his vehicle’ in English) is

formed by prepending ‘ð’ (‘and’) and ‘ � Ë’ (‘to’) to

the base lexeme ‘
�é J. »QÓ’ (‘vehicle’), appending ‘ è’

(‘his’) and replacing the feminine suffix ‘
�è ’ (ta

marbuta) of the base lexeme to ‘ �H ’. This fea-

ture of Arabic is challenging, as (1) it increases the

number of out-of-vocabulary tokens, (2) it conse-

quently worsens the issue of data sparsity 1, and

(3) it complicates the word-level correspondence be-

tween Arabic and another language in translation.

This is often worsened by the orthographic ambigu-

ity found in Arabic scripts, such as the inconsistency

in spelling certain letters.

Previous work has thus proposed morphology-

aware tokenization and orthographic normalization

as two crucial components for building a high qual-

ity phrase-based machine translation system (or its

variants) for Arabic (Habash and Sadat, 2006; Badr

et al., 2008; El Kholy and Habash, 2012). These

techniques have been found very effective in alle-

viating the issue of data sparsity and improving the

generalization to tokens not included in a training

corpus (in their original forms.)

3.2 Morphology-Aware Tokenization

The goal of morphology-aware tokenization, or mor-

pheme segmentation (Creutz and Lagus, 2005) is

to split a word in its surface form into a sequence

of linguistically sound sub-units. Contrary to sim-

ple string-based tokenization methods, morphology-

aware tokenization relies on linguistic knowledge of

a target language (Arabic in our case) and applies,

for instance, various morphological or orthographic

adjustments to the resulting sub-units.

In this paper, we investigate the tokenization

scheme used in the Penn Arabic Treebank (ATB,

(Maamouri et al., 2004)) which was found to

work well with phrase-based translation system in

(El Kholy and Habash, 2012). This tokenization

separates all clitics other than definite articles.

When translating to Arabic, the decoded sequence

of tokenized symbols must be de-tokenized. This de-

tokenization step is not trivial, as it needs to undo

any adjustment (implicitly) made by the tokeniza-

tion algorithm. In this work, we follow the approach

1see Sec. 5.2.1 of (Cho, 2015) for detailed discussion.



proposed in (Badr et al., 2008; Salameh et al., 2015).

This approach builds a lookup table from a train-

ing corpus and uses it for mapping a tokenized form

back to its original form. When the tokenized form

is missing in the lookup table, we back off to a num-

ber of hand-crafted de-tokenization rules.

3.3 Orthographic Normalization

Since the sources of major orthographic ambiguity

are in the letters ‘alif’ and ‘ya’, we normalize these

letters (and their inconsistent replacements.) Fur-

thermore, we replace parentheses ‘(’ and ‘)’ with

special tokens ‘–LRB–’ and ‘–RRB–’, and remove

diacritics.

4 Experimental Settings

4.1 Data Preparation

Training Corpus We combine LDC2004T18,

LDC2004T17 and LDC2007T08 to form a training

parallel corpus. The combined corpus contains ap-

proximately 1.2M sentence pairs, with 33m tokens

on the Arabic side. Most of the sentences are from

news articles. We ignore sentence pairs which either

side has more than 100 tokens.

In-Domain Evaluation Sets We use the eval-

uation sets from NIST 2004 (MT04) and 2005

(MT05) as development and test sets respectively.

In Ar→En, we use all four English reference trans-

lations to measure the translation quality. We use

only the first English sentence out of four as a source

during En→Ar. Both of these sets are derived from

news articles, just as the training corpus is.

Out-of-Domain Evaluation Set In the case of

En→Ar, we evaluate both phrase-based and neural

translation systems on MEDAR evaluation set (Ha-

mon and Choukri, 2011). This set has four Ara-

bic references per English sentence. It is derived

from web pages discussing climate changes, signif-

icantly differing from the training corpus. This set

was selected to highlight the robustness to domain

mismatch between training and test sets.

We verify the domain mismatches of the evalua-

tion sets relative to the training corpus by fitting a

5-gram language model on the training corpus and

computing the likelihoods of the evaluation sets, on

the Arabic side. As can be seen in Table 1, the do-

main of the MEDAR is significantly further away

MT04 MT05 MEDAR

Avg. Log-Prob. -59.74 -55.97 -75.03

Table 1: Language model scores of the Arabic side. The lan-

guage model was tuned on the training corpus.

from the training corpus than the others are.

Note on MT04 and MT05 We noticed that a sig-

nificant portion of Arabic sentences in MT04 and

MT05 are found verbatim in the training corpus (172

on MT04 and 26 on MT05). In order to accu-

rately measure the generalization performance, we

removed those duplicates from the evaluation sets.

4.2 Machine Translation Systems

Phrase-based Machine Translation We use

Moses (Koehn et al., 2007) to build a standard

phrase-based statistical machine translation system.

Word alignment was extracted by GIZA++ (Och

and Ney, 2003), and we used phrases up to 8 words

to build a phrase table. We use the following op-

tions for alignment symmetrization and reordering

model: grow-diag-final-and and msd-bidirectional-

fe. KenLM (Heafield et al., 2013) is used as a

language model and trained on the target side of the

training corpus.

Neural machine translation We use a publicly

available implementation of attention-based neural

machine translation.2 For both directions–En→Ar

and Ar→En–, the encoder is a bidirectional recur-

rent network with two layers of 512×2 gated recur-

rent units (GRU, (Cho et al., 2014)), and the decoder

a unidirectional recurrent network with 512 GRU’s.

Each model is trained for approximately seven days

using Adadelta (Zeiler, 2012) until the cost on the

development set stops improving. We regularize

each model by applying dropout (Srivastava et al.,

2014) to the output layer and penalizing the L2 norm

of the parameters (coefficient 10−4). We use beam

search with width set to 12 for decoding.

4.3 Normalization and Tokenization

Arabic We test simple tokenization (Tok) based

on the script from Moses, and orthographic normal-

ization (Norm), and morphology-aware tokeniza-

tion (ATB) using MADAMIRA (Pasha et al., 2014),

. In the latter scenario, we reverse the tokenization

before computing BLEU. Note that ATB includes

2
https://github.com/nyu-dl/dl4mt-tutorial

https://github.com/nyu-dl/dl4mt-tutorial


Arabic English En→Ar Ar→En

Tok. Norm. ATB Tok. Lower MT05 MEDAR MT05

P
B

-S
M

T

√ √
31.52 – 8.69 – 48.59 –√ √ √
33.03 (1.51) 9.78 (1.09) 49.44 (0.85)√ √ √
34.98 (3.46) 17.34 (8.65) 49.51 (0.92)√ √ √ √
35.63 (4.11) 17.75 (9.06) 49.91 (1.32)√ √ √ √
35.7 (4.18) 18.67 (9.98) 50.67 (2.08)√ √ √ √ √

35.98 (4.46) 19.27 (10.58) 51.19 (2.60)

N
eu

ra
l

M
T

√ √
28.64 – 11.09 – 47.12 –√ √ √
29.77 (1.13) 10.15 (-0.94) 47.63 (0.51)√ √ √
32.53 (3.89) 22.36 (11.27) 48.53 (1.41)√ √ √ √
32.95 (4.31) 22.79 (11.70) 47.53 (0.41)√ √ √ √
33.53 (4.89) 23.11 (12.02) 49.21 (2.09)√ √ √ √ √
33.62 (4.98) 24.46 (13.37) 49.7 (2.58)

Table 2: BLEU scores with the improvement over the tokenization-only models in the parentheses.

Norm, and both of them include simple tokeniza-

tion performed by MADAMIRA.

English We test simple tokenization (Tok), lower-

casing (Lower) for En→Ar and truecasing (True,

(Lita et al., 2003)) for Ar→En.

Byte pair encoding As mentioned earlier in

Sec. 2, we use byte pair encoding (BPE) for neural

machine translation. We apply BPE to the already-

tokenized training corpus to extract a vocabulary of

up to 20k subword symbols. We use the publicly

available script released by Sennrich et al. (2015).

5 Result and Analysis

En→Ar From Table 2, we observe that the transla-

tion quality improves as a better preprocessing rou-

tine is used. By using the normalization as well as

morphology-aware tokenization (Tok+Norm+ATB),

the phrase-based and neural systems each achieve as

much as +4.46 and +4.98 BLEU over the baselines,

on MT05. The improvement is even more appar-

ent on the MEDAR whose domain deviates from the

training corpus, confirming that proper preprocess-

ing of Arabic script indeed helps in handling word

tokens that are not present in a training corpus.

We notice that the tested tokenization strategies

have nearly identical effect on both the phrase-

based and neural translation systems. The transla-

tion quality of either system is mostly effective by

the tokenization strategy employed for Arabic, and

is largely insensitive to whether source sentences

in English were lowercased. This reflects well the

complexity of Arabic scripts, compared to English,

discussed earlier in Sec. 3.1.

Another important observation is that the neu-

ral translation system significantly outperforms the

phrase-based one on the out-of-domain evaluation

set (MEDAR), while they perform comparably to

each other in the case of the in-domain evaluation set

(MT05). We conjecture that this is due to the neural

translation system’s superior generalization capabil-

ity based on its use of continuous space representa-

tions.

Ar→En In the last column of Table 2, we ob-

serve a trend similar to that from En→Ar. First,

both phrase-based and neural machine translation

benefit quite significantly from properly normal-

izing and tokenizing Arabic, while they are both

less sensitive to truecasing English. The best

translation quality using either model was achieved

when all the tokenization methods were applied

(Ar: Tok+Norm+ATB and En:Tok+True), improv-

ing upon the baseline by more than 2+ BLEU. Fur-

thermore, we again observe that the phrase-based

and neural translation systems perform comparably

to each other.

6 Conclusion

We have provided first results on Arabic neural MT,

and performed extensive experiments comparing it

with a standard phrase-based system. We have con-

cluded that neural MT benefits from morphology-

based tokenization and is robust to domain change.
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Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. 2014. Learning

phrase representations using RNN encoder-decoder

for statistical machine translation. arXiv:1406.1078.

[Cho et al.2015] Kyunghyun Cho, Aaron Courville, and

Yoshua Bengio. 2015. Describing multimedia con-

tent using attention-based encoder-decoder networks.

Multimedia, IEEE Transactions on, 17(11):1875–

1886.

[Cho2015] Kyunghyun Cho. 2015. Natural lan-

guage understanding with distributed representation.

arXiv:1511.07916.

[Chung et al.2016] Junyoung Chung, Kyunghyun Cho,

and Yoshua Bengio. 2016. A character-level de-

coder without explicit segmentation for neural ma-

chine translation. In ACL.

[Creutz and Lagus2005] Mathias Creutz and Krista La-

gus. 2005. Unsupervised morpheme segmentation

and morphology induction from text corpora using

Morfessor 1.0. Helsinki University of Technology.

[Devlin et al.2014] Jacob Devlin, Rabih Zbib,

Zhongqiang Huang, Thomas Lamar, Richard M

Schwartz, and John Makhoul. 2014. Fast and robust

neural network joint models for statistical machine

translation. In ACL.

[El Kholy and Habash2012] Ahmed El Kholy and Nizar

Habash. 2012. Orthographic and morphological pro-

cessing for english–arabic statistical machine transla-

tion. Machine Translation, 26(1-2):25–45.

[Habash and Sadat2006] Nizar Habash and Fatiha Sadat.

2006. Arabic preprocessing schemes for statistical

machine translation.

[Hamon and Choukri2011] Olivier Hamon and Khalid

Choukri. 2011. Evaluation methodology and results

for english-to-arabic mt. Proceedings of MT Summit

XIII, pages 480–487.

[Heafield et al.2013] Kenneth Heafield, Ivan

Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn.

2013. Scalable modified Kneser-Ney language model

estimation. In Proceedings of the 51st Annual Meet-

ing of the Association for Computational Linguistics,

pages 690–696, Sofia, Bulgaria, August.
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