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Abstract

Despite cross-lingual generalization demon-

strated by pre-trained multilingual models, the

translate-train paradigm of transferring En-

glish datasets across multiple languages re-

mains to be a key mechanism for training task-

specific multilingual models. However, for

many low-resource languages, the availability

of a reliable translation service entails signifi-

cant amounts of costly human-annotated trans-

lation pairs. Further, translation services may

continue to be brittle due to domain mismatch

between task-specific input text and general-

purpose text used for training translation mod-

els. For multilingual semantic parsing, we

demonstrate the effectiveness and flexibility

offered by large language models (LLMs) for

translating English datasets into several lan-

guages via few-shot prompting. Through ex-

tensive comparisons on two public datasets,

MTOP and MASSIVE, spanning 50 languages

and several domains, we show that our method

of translating data using LLMs outperforms a

strong translate-train baseline on 41 out of 50

languages. We study the key design choices

that enable more effective multilingual data

translation via prompted LLMs.

1 Introduction

Enabling language technologies across several lan-

guages is an important goal for serving a diverse

range of users in an inclusive manner. Recent ad-

vances in large-scale self-supervised multilingual

language models hold immense promise in bridg-

ing the quality gap that currently exists between En-

glish and many other low resource languages (Con-

neau et al., 2020; Brown et al., 2020; Xue et al.,

2021). Even though multilingual models exhibit

cross-lingual generalization, getting meaningful

performance across several languages still requires

significant amounts of task-specific labeled data.

We consider the problem of automatically syn-

thesizing semantic parsing datasets across several

∗Work done during an internship at Google Research

languages. Semantic parsing (Zelle and Mooney,

1996; Zettlemoyer and Collins, 2005; Berant et al.,

2013) is the task of mapping natural language

text into an executable logical-form. For exam-

ple, given a user instruction (x) : “Wake me

up by 5 am”, mapping it to the logical-form

(y): [IN:CREATE_ALARM [SL:DATE_TIME 5 am ]].

Manual annotation of queries with their logical

forms requires human expertise which makes data

collection across multiple languages challenging.

A common approach to automatic multilingual

dataset creation is translating existing English

datasets into target languages. Prior methods uti-

lize an off-the-shelf machine translation model for

translating the English utterance into the target lan-

guage xeng → xtgt, followed by projecting lan-

guage specific components in the English logical-

form yeng to obtain the logical-form ytgt in the tar-

get language (Moradshahi et al., 2020, 2021; Xia

and Monti, 2021; Nicosia et al., 2021; Gritta et al.,

2022; Wang et al., 2022). The projection step is

often learned independent of the translation service,

resulting in poor generalization across languages.

In this work we aim to utilize the few-shot gen-

eralization abilities exhibited by large language

models (LLMs) (Brown et al., 2020; Chowdh-

ery et al., 2022; Scao et al., 2022) for bootstrap-

ping semantic parsing datasets across fifty lan-

guages. We propose a recipe of using LLMs

to translate an English semantic parsing dataset

containing (utterance, logical-form) pairs:

Deng = {(xieng, y
i
eng)} into a corresponding dataset

in a target language: Dtgt = {(xitgt, y
i
tgt)}. The gen-

erated dataset Dtgt is then used to train a semantic

parser in the target language. Our method uses

a small amount of manually translated semantic

parsing examples to teach the LLM how to trans-

late English examples in the target language via

in-context learning (Min et al., 2022).

Figure 1 describes our data-translation pipeline

which we refer to as LLM-T (§ 3). In contrast
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Figure 1: Proposed semantic parsing data translation pipeline using LLMs (§ 3): With the help of human

translators, we first collect translations of a small seed set of English examples in the Target Language (e.g. Hindi;

§ 3.1). Given a new English example, a small subset from this initial seed set of examples with their respective

translations is chosen to prompt the LLM (§ 3.2). The prompted LLM translates the given English example in

the Target Language. We repeat this process for each example in the English training data to generate a training

dataset in the Target Language. To ensure high-quality of the resulting dataset, we generate diverse translations via

top-p (nucleus) sampling (§ 3.3) and apply consistency filtering (§ 3.4).

to prior translation based methods that involved

a two-staged process requiring different modules,

our method uses the LLM to jointly translate

an English (xeng, yeng) pair directly into the tar-

get language (xtgt, ytgt). We identify two impor-

tant choices that make the LLM translated data

more effective for training a downstream parser:

(i) Sampling diverse translations (§ 3.3): De-

coding translations using top-p (Fan et al., 2018)

and top-k (Holtzman et al., 2019) sampling leads

to improved downstream performance compared

to using greedy decoding. Sampling multiple di-

verse translations per example further improves the

downstream performance; (ii) Filtering inconsis-

tent examples (§ 3.4): Decoding via sampling can

result in noisy joint translations of the (utterance,

logical-form) pairs. To filter out the inconsistent

pairs, we propose a slot-value match based filtering

technique that improves the training data quality.

We perform experiments on two multilingual se-

mantic parsing datasets: MTOP (Li et al., 2021)

and MASSIVE (FitzGerald et al., 2022). On 4

out of 5 languages in MTOP and 41 out of 50 lan-

guages in MASSIVE, our method LLM-T outper-

forms TAF (Nicosia et al., 2021), a strong baseline

that utilizes a supervised translation service (§ 5.1).

Further, we see that LLM-T achieves 93% of the

performance obtained by “fully-supervised” mod-

els that use 30× more manually translated exam-

ples (§ 5.2). We justify the importance of generat-

ing multiple translations using sampling, filtering

out inconsistent examples, and using larger-sized

LLMs in improving translated data quality (§ 5.3).

Finally, we perform an error analysis of our parser

and show the key sources of disagreements between

the model predictions and the ground truth (§ 5.4).

2 Background

In this section, we provide an overview of semantic

parsing and prior translation-based methods for

creating multilingual semantic parsing datasets.

2.1 Semantic Parsing

Semantic parsing is the task of mapping text

queries to their meaning representations or logical

forms (Zelle and Mooney, 1996; Zettlemoyer

and Collins, 2005; Berant et al., 2013). We focus

on task-oriented semantic parsing (Gupta et al.,

2018) where the user utterance needs to be parsed

into a high-level intent specifying the overall goal,

and fine-grained slots containing details about

the utterance. The intents and slots come from a

task-specific vocabulary. For example, given an

utterance x: “How is the rainfall today?”,

the parser should generate the logical-form

y: [IN:GET_WEATHER [SL:ATTRIBUTE rainfall]

[SL:DATE today ] ]

Here, IN:GET_WEATHER is the high-level intent,

SL:ATTRIBUTE and SL:DATE are the slots that spec-

ify details about the intent. We refer to the logical-



form with its slot values removed as its "signature".

For example, the signature of y is

[IN:GET_WEATHER [SL:ATTRIBUTE][SL:DATE]]

2.2 Translating Semantic Parsing Datasets

Given an English semantic parsing dataset con-

taining (utterance, logical-form) pairs Deng =
{(xieng, y

i
eng)}, many methods aim to translate Deng

to a dataset Dtgt = {(xitgt, y
i
tgt)} in the target lan-

guage (tgt). Here xitgt is the translation of xieng,

and yitgt is the logical form grounded in the trans-

lated utterance xitgt. Target logical form yitgt has the

same signature as yieng and only differs in terms

of the translated slot values. Most translation

based approaches (Moradshahi et al., 2020, 2021;

Xia and Monti, 2021; Nicosia et al., 2021) trans-

late an English example (xieng, y
i
eng) to the corre-

sponding target language example (xitgt, y
i
tgt) via a

two step process: (i) Translate: Use a supervised

translation service to convert the English utterance

xieng into the target language utterance xitgt; and

(ii) Project: Replace the English slot values in yieng

with spans copied from the translated utterance

xitgt via a learned alignment model. The translated

examples are then used to train a downstream mul-

tilingual semantic parser. For example, Nicosia

et al. (2021) implement the project step by training

a filler module on English data to fill slot-values

in a logical-form signature by copying spans from

the utterance. During inference, the trained filler

module is then used in a zero-shot manner to fill

logical-form signatures with spans copied from the

translated utterances.

3 Our Method: Prompting LLMs for

Dataset Translation

Our goal is to learn a multilingual semantic parser

capable of parsing user queries in many languages.

Towards this goal, we propose a method for gen-

erating multilingual training datasets via few-shot

prompting of an LLM to translate existing English

datasets into several languages.

In contrast to prior approaches, we jointly

perform example translation by prompting an

LLM with a few exemplars of translating English

(xeng, yeng) pairs to target language (xtgt, ytgt) pairs.

Figure 1 describes our data-translation method

which we refer to as LLM-T. With the help of

human translators we first collect a small seed set

of exemplar translations used for prompting the

LLM (§ 3.1). Given an input English example, we

dynamically construct the LLM prompt by identify-

ing a relevant subset of seed exemplars (§ 3.2). The

LLM translates the English example into the target

language by in-context learning from the exem-

plars provided in the prompt. Instead of decoding

the most likely translation, we generate multiple

diverse translations (§ 3.3) using top-p (nucleus)

sampling (Holtzman et al., 2019). While sampling

improves the text diversity, it can lead to more noisy

generations. We filter out the noisy generations us-

ing a simple string-match based technique before

training a parser on the translated data (§ 3.4).

3.1 Selecting Seed Exemplars for Translation

Given an English semantic parsing dataset Deng =
{(xieng, y

i
eng)}, we first want to identify a small seed

set Seng ⊂ Deng that will be translated into the tar-

get language (Stgt) with the help of human transla-

tors. The examples in Seng and their corresponding

translations in Stgt will be used for prompting the

LLM. Therefore, the choice of the seed examples

in Seng that are manually translated into Stgt be-

comes important—we would like that the multiple

domains (e.g. Alarms, Music, News, Weather,

etc.) and the intents and slot types in each do-

main are covered. This ensures that for a given

English example to be translated, we will be able

to prompt the LLM in a manner such that at least

one of the few-shot exemplars will share the intent

and slots with the test English example. In practice,

we select seed examples in a manner to cover all

the intents and slots in a domain at least once. If

the selected examples are less than 20 for a domain,

we select the remaining examples randomly.

3.2 Constructing the Prompt using

Translation Pairs in the Seed Sets

LLM inference is constrained by the maximum

number of tokens in the input. Hence, we can

only fit a limited number of examples to construct

the LLM prompt. The choice of prompt examples

and their ordering is known to significantly impact

the quality of the generations (Kumar and Taluk-

dar, 2021; Rubin et al., 2021; Lu et al., 2022). To

improve the likelihood of correctly translating an

English example (xeng, yeng), we retrieve seed ex-

amples {(xseng, y
s
eng, x

s
tgt, y

s
tgt)} that share the same

domain with yeng. To bias the LLM further, we

order the more relevant prompt examples closer

to the input English example. Here, relevance be-

tween two examples is considered higher if they

share the same intent. The remaining examples are



Figure 2: Constructing the LLM Prompt (§ 3.2): The

input to the LLM contains a brief task description in

the beginning followed by a series of English examples

(xs

eng, y
s

eng) and their translations in the target language

(xs

tgt, y
s

tgt) chosen from the seed sets Seng and Stgt respec-

tively. Following the prompt examples, we append the

new English example (xeng, yeng) to the input prompt

which is fed to LLM. In the output, the LLM generates

the translation for the new English example (xtgt, ytgt).

arbitrarily arranged to appear earlier in the prompt.

Figure 2 shows an example translation—the LLM

input contains two exemplars and then the English

example that needs to be translated. The LLM out-

put shows the translated output from the LLM.

3.3 Decoding Diverse Outputs from LLM

The text decoded from language models using the

standard greedy decoding or beam search is often

repetitive (Vijayakumar et al., 2016; Shao et al.,

2017). To mimic how users express the same inten-

tions in diverse ways, we experiment with the top-k

and top-p sampling techniques (Fan et al., 2018;

Holtzman et al., 2019) to decode multiple diverse

translations per example. We expect sampling mul-

tiple translations to yield a better quality training

dataset which in turn should result in better down-

stream semantic parsing performance compared to

training on greedily decoded examples.

3.4 Data Filtering using Slot-Consistency

While the sampling techniques produce more di-

verse text, the sampled translations can be rela-

tively noisy if they have lower likelihoods as per

the model (Zhang et al., 2021). Thus, the trans-

lated pairs (xtgt, ytgt) in the LLM output can be

Figure 3: Slot Consistency Based Filtering (§ 3.4):

We present the input English example (xeng, yeng) and

its four translated samples {(xi

tgt, y
i

tgt)}) the target lan-

guage. The first two samples are slot-consistent as the

slot-values (in green) in the logical forms appear ex-

actly in the text utterances, while the last two samples

are slot-inconsistent as the slot-values (in red) do not

appear as an exact sub-string of the text utterance.

inconsistent w.r.t. each other. For example, con-

sider the LLM translated pair (x3tgt, y
3
tgt) shown in

Figure 3. Here, y3tgt contains a slot value (in red)

that does not appear in the corresponding utterance

x3tgt making the pair (x3tgt, y
3
tgt) inconsistent. As per

the task definition, for a given example (x, y), the

slot-values in the logical form y should come from

the spans of the utterance x. Thus, we filter out

the translated examples (xtgt, ytgt) like these where

the slot-values in ytgt do not appear exactly as an

exact sub-span in xtgt. Figure 3 shows examples of

slot-consistent and slot-inconsistent generations by

an LLM through top-k sampling.

4 Experimental Set-up

We describe our experimental setup in this section.

Datasets We experiment on two public datasets

— MTOP (Li et al., 2021) and MASSIVE (FitzGer-

ald et al., 2022). MTOP contains examples from

six languages: English, French, German, Hindi,

Spanish, and Thai, spanning 11 domains covering

117 intents and 78 slot types. On average, MTOP

contains 12.3K examples in the train split, 1.5K in

the dev split, and 2.7K in the test split per language.

MASSIVE contains examples from 51 typologi-

cally diverse languages including English spanning

18 domains covering 60 intents and 50 slot types.

For each language, MASSIVE contains roughly

11.5K examples in the train split, 2K examples in

the dev split and 3K examples in the test split.



Evaluation Metric Prior work (Li et al., 2021;

Nicosia et al., 2021) uses Exact Match (EM) accu-

racy as a primary metric which compares predicted

and gold logical-forms strings. However, the exact

string-match penalizes correct predictions where

the order of slots within an intent is different. For

example, consider the following logical-forms:

LF-1: [IN:GET_WEATHER [SL:ATTRIBUTE rainfall]

[SL:DATE today ] ]

LF-2: [IN:GET_WEATHER [SL:DATE today][SL:ATTRIBUTE

rainfall ] ]

LF-1 and LF-2 are equivalent but the difference in

the ordering of slots results in a negative match.

Thus, we correct the EM metric by making the

match function agnostic to the ordering of slots

within an intent in the logical-form. We compare

different models as per this corrected EM metric.

Semantic Parsing Model We use a pre-trained

mT5-Large checkpoint (1.2B parameters) to initial-

ize the downstream semantic parsing models that

map utterances in the input to logical-forms in the

output. We finetune the mT5 model on the original

English dataset mixed with the translated datasets

in target languages. We train using the Adafactor

optimizer (Shazeer and Stern, 2018) with a fixed

learning rate of 1e−3 and a batch size of 256, for

30K steps using the T5X library (Roberts et al.,

2022) on 64 TPU-v3 chips. Examples from each

language are sampled uniformly for batch creation.

For model selection, we choose the best perform-

ing checkpoint as per the dev splits and report our

results on the test splits.

LLM-T (Our Method) We experiment with 8B,

62B, and 540B sized variants of PaLM (Chowdh-

ery et al., 2022) as our LLM, and primarily utilize

LLM-540B for translating English examples in dif-

ferent languages. For the seed set Stgt used for

prompting the LLM, we borrow roughly 250 ex-

amples covering 11 domains from MTOP’s train

set and 350 examples covering 18 domains from

MASSIVE’s train set (§ 3.1). During decoding,

we sample 8 translations per example using top-p

sampling (§ 3.3), with p = 0.95 and temperature

scaling T = 0.7, followed by filtering out slot-

inconsistent examples (§ 3.4). We present an anal-

ysis of our design choices in § 5.3.

Baselines (i) Zero-Shot: Train the model only

on the English data and evaluate on other languages

in a zero-shot manner. (ii) Few-Shot: In addi-

tion to the English training data, use the seed set

of examples Stgt for each language during train-

ing. For MTOP, |Stgt| ≈ 250 and for MASSIVE,

|Stgt| ≈ 350. (iii) TAF: We implement the method

from Nicosia et al. (2021) that uses an off-the-shelf

translation service (§ 2.2) to construct Dtgt in all

the target languages. We borrow Dtgt from Nicosia

et al. (2021) for MTOP and from Nicosia and Pic-

cinno (2022) for MASSIVE.

5 Results and Analysis

We first present downstream performance of seman-

tic parsing models trained on data generated by our

method (§ 5.1) and compare with zero-shot setting,

few-shot setting, and the TAF method (Nicosia

et al., 2021). We then compare our method against

the “full-shot” skyline where we utilize the origi-

nal training datasets that were manually translated

with the help of human annotators in the target

languages (§ 5.2). We then present an analysis

of different design choices that result in effective

data translation using LLM-T (§ 5.3). Finally, we

present an error analysis to show the key sources of

disagreements between the parser predictions and

the ground truth (§ 5.4). All the experiments use

our corrected EM metric (§ 4; Evaluation Metric).

5.1 Evaluation on MTOP and MASSIVE

In Table 1, we compare performance of different

methods for the 5 non-English languages in the

MTOP dataset. The Zero-Shot baseline trains an

mT5 model only on the English part of the train-

split. The Few-Shot baseline additionally includes

the human translated seed sets Stgt for each lan-

guage. Both TAF and LLM-T train on the original

English train set mixed with their respective trans-

lated datasets in each language. As all the baselines

utilize the original English train set, we see com-

parable performance on English (around 85.0 EM).

We observe LLM-T outperforms TAF in 4 out of 5

languages by 3.6 EM. Since LLM-T uses Stgt for

prompting, we also mix Stgt with TAF data and still

observe that LLM-T improves over TAF+Few-Shot

by 2.9 EM. On relatively low-resource languages,

Hindi (hi) and Thai (th), LLM-T leads to much

larger improvements over TAF.

Figure 4 shows the performance difference

between our LLM-T method and TAF for the

MASSIVE dataset (FitzGerald et al., 2022). On

41 out of 50 languages, we find LLM-T to be bet-

ter than TAF. For nine languages LLM-T outper-

forms TAF by more than 5.0 EM—Simple Man-



Figure 4: EM accuracy difference between LLM-T and TAF across the 50 languages in MASSIVE dataset

(§ 5.1). LLM-T outperforms TAF on 41 out of 50 languages, with gains of more than 5 EM for nine of these

languages. Only for Hebrew (he), LLM-T performs worse than TAF by more than 3 EM.

Method de es fr hi th Avg

Zero-Shot 54.4 57.8 62.8 42.3 42.1 51.9

Few-Shot 62.8 69.5 65.9 55.3 53.9 61.5

TAF 75.0 74.9 78.0 63.0 60.8 70.3

TAF + Few-Shot 75.1 74.5 78.5 63.9 62.9 71.0

LLM-T (ours) 74.0 75.4 79.6 72.3 68.0 73.9

Table 1: EM accuracy comparison on MTOP (§ 5.1):

Data generated using LLM-T yields better performance

on 4 out of 5 languages in MTOP. We observe large

improvements for low-resource languages hi and th.

darin (zhc, +11.9), Traditional Mandarin (zht,

+10.1), Japanese (ja, +9.3), Telugu (te, +6.9),

Malayalam (ml, +6.6), Kannada (ka, +6.1), Lat-

vian (lv, +5.7), Tamil (ta, +5.5), and Khmer (km,

+5.2). Only for Hebrew (he, −4.0), LLM-T is

worse by more than 3.0 EM. Averaged across all

languages, LLM-T outperforms TAF by 2.2 EM. In

Appendix A.1, we provide detailed baseline com-

parisons for all the 50 languages.

5.2 Comparison with gold translations

An ideal translate-train method should be com-

petitive w.r.t. training on fully human translated

datasets. Table 2 provides a comparison between

training on TAF, LLM-T, and the datasets fully

translated with the help of human annotators in the

target languages (Gold). Between TAF and Gold,

we observe a significant gap of 9.2 EM in MTOP

and 6.7 EM in MASSIVE. Our method LLM-T, re-

duces this gap by 3.6 EM in MTOP and 2.2 EM in

MASSIVE. Overall, LLM-T achieves roughly 93%

of the performance obtained by the Gold skyline

that use more than 30× human translated examples.

Appendix A.1, provides per-language comparisons

Dataset Few-Shot TAF LLM-T Gold

MTOP 61.5 70.3 73.9 79.5
MASSIVE 55.9 61.0 63.2 67.7

Table 2: Comparison with Gold skyline (§ 5.2):

While training on the human translated datasets (Gold)

yields the best performance, LLM-T results in a smaller

performance gap compared to TAF. All numbers are av-

eraged over the 5 non-English languages in MTOP.

with the Gold skyline for both the datasets.

Decoding
de es fr hi th Avg

Strategy

Greedy 71.1 71.7 72.6 68.1 66.0 69.9

+ Filtering 72.2 73.5 74.8 71.5 67.4 71.9

Top-p Sampling (p = 0.95)

(#samples)

1 70.1 71.5 74.3 66.9 67.2 70.0

2 71.4 72.1 74.5 68.8 67.2 70.8

4 71.1 72.8 76.4 69.0 66.0 71.1

8 71.9 72.7 74.2 70.0 68.4 71.4

Top-p Sampling + Filtering (p = 0.95)

(#samples)

1 72.0 75.2 78.9 71.6 68.1 73.2

2 73.7 75.2 79.5 72.0 67.6 73.6

4 73.4 75.3 79.0 72.1 67.7 73.5

8 74.0 75.4 79.6 72.3 68.0 73.9

Table 3: Impact of decoding strategy and filtering:

Generating multiple translations per English example

using top-p sampling followed by filtering inconsis-

tent examples offers superior downstream performance

compared to using greedy decoding or sampling just

one translation per example. In Appendix A.2 we

present results for top-k sampling as well.



Max Len de es fr hi th Avg

768 73.4 75.4 76.9 73.1 69.7 73.7

1024 74.0 75.4 79.6 72.3 68.0 73.9

1792 74.3 75.7 80.5 74.0 71.1 75.1

Table 4: Impact of prompt length: Longer prompts

containing more exemplars result in more effective

translated datasets yielding higher EM accuracy.

5.3 Analysis of Design Choices

We now present an analysis of the design choices

that enabled more effective data translation via

LLM-T. All the experiments in this section are

carried out on the MTOP dataset.

Role of decoding strategy and filtering In Ta-

ble 3, we present the EM accuracy of parsers

trained on datasets translated using various com-

binations of decoding (§ 3.3) and filtering (§ 3.4)

methods. For generating the translated outputs we

experiment with greedy decoding, top-k (Fan et al.,

2018) and top-p (Holtzman et al., 2019) sampling.

Like prior translate-train methods, we begin with

only one translation per example and observe sam-

pling to be comparable with greedy decoding in

downstream EM accuracy. In contrast, decoding

two translations per example via sampling boosts

the EM accuracy across all the languages. However,

further increasing the translated samples to 4 and

8 results in only marginal performance differences.

Manual inspection of the translated data revealed

inconsistent utterance and logical-form pairs which

motivated our design of slot-consistency based fil-

tering (§ 3.4). Training the parser on filtered data

provides further gains over training on unfiltered

data. In Appendix A.2, we also present the results

for top-k sampling. Overall, utilizing upto 8 top-p

translated samples per English example followed

by slot-consistency filtering provides the best per-

formance averaged over all the languages.

Impact of Prompt Length We expect prompts

containing more exemplars to yield higher qual-

ity translated examples owing to more information

for in-context learning. In Table 4, we compare

EM performance when using maximum prompt-

lengths of 768, 1024, and 1792 tokens. Training on

datasets translated using prompt-length of 1792

tokens provides the best downstream EM perfor-

mance across all the languages. However, longer

prompts lead to considerably longer inference

times. Hence, we conduct our main experiments

de es fr hi th Avg

LLM-T-8B 65.3 69.4 70.7 56.6 55.1 62.0

LLM-T-62B 72.0 73.3 76.7 68.2 65.6 71.2

LLM-T-540B 74.0 75.4 79.6 72.3 68.0 73.9

Table 5: Impact of LLM size: EM performance of

semantic parsers trained on translated datasets improve

with increasing the size of LLMs used for translation.

with prompt the length of 1024 tokens.

Role of LLM size In Table 5, we compare parser

performance when trained on data generated by

LLMs of different sizes. Training on larger LLM

generated data leads to better performance—LLM-

T-540B yields the best performance on all the lan-

guages, followed by LLM-T-62B which outper-

forms LLM-T-8B on all the languages.

5.4 Error Analysis

Figure 5: Distribution of error categories: estimated

across all five languages on MTOP’s dev set.

We analyze the examples where the predic-

tions from our semantic parser do not match with

the ground truth. In Table 6, we categorize all

the erroneous examples into five broad categories

(with English examples): (i) Slot Value Mismatch

(ii) Wrong Intent (iii) Missing Slot (iv) Extra Slot

and (v) Slot Confusion. Figure 5 presents the distri-

bution of the error categories aggregated across all

the languages on the MTOP dev-split. The "Slot

Value Mismatch" is the most frequent error cate-

gory (41.1%)—here the predicted parse structure

is correct but the slot-values do not match perfectly

with the gold parse. After manually inspecting 300

such errors we found that in roughly 50% of the

cases the predicted and gold slot-values often have

minor mismatches which may not be recognized as

error by another human annotator and should not

lead to incorrect output upon logical form execu-



Slot Value Mismatch (41.1%)

Utterance: Set an alarm for 5 pm tomorrow

Prediction: [IN:CREATE_ALARM [SL:DATE_TIME for 5 pm ] [SL:DATE_TIME tomorrow ]

Target: [IN:CREATE_ALARM [SL:DATE_TIME 5 pm ] [SL:DATE_TIME tomorrow ]

Wrong Intent (19.5%)

Utterance: What can I do today

Prediction:[IN:QUESTION_NEWS [SL:DATE_TIME today ]]

Target: [IN:GET_EVENT [SL:DATE_TIME today ] ]

Missing Slot (15.1%)

Utterance: Play Justin Timberlake ’s newest single

Prediction:[IN:PLAY_MUSIC [SL:MUSIC_TYPE single ] ]

Target: [IN:PLAY_MUSIC [SL:MUSIC_ARTIST_NAME Justin Timberlake ] [SL:MUSIC_TYPE single ] ]

Extra Slot (14.4%)

Utterance: play music on the speaker

Prediction: [IN:PLAY_MUSIC [SL:MUSIC_TYPE music ] [SL:MUSIC_TYPE speaker ] ]

Target: [IN:PLAY_MUSIC [SL:MUSIC_TYPE music ] ]

Slot Confusion (9.9%)

Utterance: audio call wedding planner please

Prediction:[IN:CREATE_CALL [SL:CONTACT wedding planner ] ]

Target: [IN:CREATE_CALL [SL:GROUP wedding planner ] ]

Table 6: Examples of Error Categories (§ 5.4) The errors in the predicted parse can be broadly classified into

five categories: (i) Slot Value Mismatch: Predicted parse has the correct signature but the slot-values are incorrect,

(ii) Wrong Intent: High-level intent of the predicted parse is incorrect, (iii) Missing Slot: One or more slots in the

gold parse do not appear in the output, (iv) Extra Slot: Output contains extra slot(s) compared to the gold, (v) Slot

Confusion: Prediced parse contains the correct correct intent and number of slots but the wrong slot-types.

tion. For example, in the first row of Table 6, the

predicted value for the DATE_TIME slot is ‘for 5

pm’, while the target value is just ‘5 pm’.

6 Related Work

Multilingual Semantic Parsing Multilingual se-

mantic parsers are typically initialized with a foun-

dation model (Bommasani et al., 2021) pre-trained

on vast amounts of multilingual data (Conneau

et al., 2020; Xue et al., 2021; Li et al., 2021;

FitzGerald et al., 2022) followed by supervised

training on synthetic or real multilingual datasets.

A standard approach for constructing multilin-

gual datasets is to translate and localize English

datasets with the help of multilingual speakers

or machine translation. For example, MTOP (Li

et al., 2021), MASSIVE (FitzGerald et al., 2022),

and MultiAtis++ (Xu et al., 2020) were con-

structed by translating TOP (Gupta et al., 2018),

SLURP (Roberts et al., 2022), and ATIS (Price,

1990) respectively through human translators.

Machine Translation based methods Machine

translation based approaches continue to be

important for multilingual task-specific mod-

els (Hartrumpf et al., 2008; Liang et al., 2020; Hu

et al., 2020; Fang et al., 2021; Ladhak et al., 2020)

including semantic parsing. Machine translation

can either be used during the inference time to

translate a user query into English for feeding it

to an English-only model. This approach is re-

ferred to as translate-test (Artetxe et al., 2020;

Uhrig et al., 2021). A more common way of using

machine translation is in the form of data augmen-

tation, referred as translate-train where English

text in training data is translated into several lan-

guages (Sherborne et al., 2020; Moradshahi et al.,

2020, 2021; Xia and Monti, 2021; Nicosia et al.,

2021; Gritta et al., 2022; Wang et al., 2022). In

practice, translate-train methods tend to outper-

form translate-test methods while also reducing

the latency associated with translating text during

the inference time (Yang et al., 2022).

LLMs and Few-Shot learning Trans-

former (Vaswani et al., 2017) based generative

LLMs (Radford et al., 2019; Brown et al., 2020;

Thoppilan et al., 2022; Soltan et al., 2022; Smith

et al., 2022; Zhang et al., 2022; Chowdhery et al.,

2022) trained on massive amounts of web-scale

text corpora using next token prediction objective

exhibit strong few-shot generalization abilities.

When prompted with a task description and a

handful of task-specific examples, LLMs can often

match the performance of finetuned models via

in-context learning (Xie et al., 2021; Min et al.,

2022; Wei et al., 2022; Zhou et al., 2022). We

utilize LLMs for translating English datasets in

several languages using few-shot prompting.

7 Conclusion

We present a method of utilizing large language

models (LLMs) for bootstrapping multilingual se-

mantic parsers across several languages. In compar-

ison to using off-the-shelf translation services that

rely on significant amounts of human supervision,

we demonstrate that prompting self-supervised

LLMs can be a more effective and scalable alter-



native for dataset translation. We find that gen-

erating multiple diverse translations using sam-

pling techniques followed by consistency-based

filtering make the translated datasets more effec-

tive for training multilingual semantic parsers. On

41 out of 50 typologically diverse languages within

two large datasets spanning several domains, our

method outperforms a strong translate-train method

that utilizes a supervised translation service.

8 Limitations

While translating English queries in different lan-

guages is a useful form of data augmentation, we

think that further performance improvements can

be obtained by careful localization of entities in the

text queries. This will result in examples where

the training dataset contains entities that are often

talked about in the target language and might lead

to less train-test domain shift. LLMs contain lan-

guage specific priors which can be harnessed to per-

form such localization of the translated queries thus

enabling more realistic data augmentations. In this

work we presented a simple string-match based fil-

tering technique to remove noisy translations. Data

filtering can be further improved with the help of

learned models. We observed that larger LLMs are

important to generate more effective translated data.

However running these experiments is constrained

by the availability of large amounts of compute

resources. We hope future work will address these

limitations of our approach.

9 Ethical Considerations

We utilize large language models to translate

datasets initially available in English into several

languages. The real-world deployment of models

trained on LLM-translated data should undergo a

careful review of any harmful biases. However,

the LLM-translated data and the logical-forms gen-

erated by a semantic parser are not user-facing,

thus a smaller risk of any direct harms. The in-

tended users of any semantic parsing model must

be made aware that the answers returned by the

model could be incorrect, more so for user-queries

in low-resource languages. We do not immediately

foresee any serious negative implications of the

specific contributions that we make in this work.
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A Appendix

A.1 Additional results

Lang Zero-Shot Few-Shot TAF
TAF +
Few-Shot

LLM-T
(top-k)

LLM-T
(top-p)

Gold
(skyline)

af 48.5 59.0 64.5 64.5 66.7 66.3 68.5
am 31.0 47.6 58.3 57.4 56.1 55.5 64.6
ar 35.9 50.5 57.2 58.0 56.6 57.3 65.5
az 39.3 57.1 60.5 60.5 62.6 62.8 68.8
bn 40.8 55.4 62.1 61.7 61.1 62.0 68.3
cy 26.7 44.8 59.1 58.3 61.1 61.8 65.1
da 57.5 62.4 66.2 66.3 69.1 68.5 71.0
de 54.3 62.8 67.5 67.7 68.3 68.4 70.4
el 47.3 57.8 64.2 65.5 65.2 65.1 68.7
en 72.7 71.4 73.5 72.9 73.3 73.4 73.0
es 53.4 58.1 64.6 64.6 64.7 64.7 66.6
fa 48.8 58.0 63.1 62.9 62.8 63.2 68.1
fi 47.5 58.4 65.0 65.3 66.7 67.2 70.9
fr 54.6 58.0 65.3 64.9 63.9 63.7 67.1
he 35.3 56.1 60.6 61.2 55.3 56.6 68.3
hi 40.1 54.4 61.6 62.5 63.1 63.5 66.2
hu 44.1 57.1 63.8 63.6 64.5 65.4 69.7
hy 39.3 53.8 58.7 59.2 62.3 62.5 67.1
id 55.3 60.2 65.5 65.9 66.6 66.0 69.1
is 41.3 54.4 62.2 61.5 63.6 63.5 69.5
it 52.3 58.6 64.0 63.6 65.2 65.8 67.2
ja 45.6 55.1 56.3 56.5 65.6 65.6 67.3
jv 34.3 51.7 58.6 60.2 62.0 61.6 66.7
ka 36.5 53.4 53.5 54.6 59.2 59.6 65.7
km 37.8 51.1 49.1 53.7 55.3 54.3 62.8
kn 37.1 49.3 55.0 55.9 57.7 57.2 62.1
ko 42.1 56.3 62.2 63.6 62.4 63.5 69.3
lv 45.4 56.0 60.4 61.3 66.0 66.1 68.8
ml 38.6 53.9 55.5 56.9 62.5 62.1 67.5
mn 30.9 51.4 57.6 59.4 59.5 59.2 68.0
ms 48.6 58.9 66.2 66.2 65.8 65.7 69.2
my 38.1 54.9 60.5 62.3 61.5 60.6 69.6
nb 55.2 63.0 67.5 67.7 67.7 67.4 71.0
nl 53.1 61.2 67.3 68.5 68.7 68.5 70.5
pl 50.5 57.4 61.1 61.4 62.9 62.5 65.6
pt 54.9 60.3 65.8 65.7 66.4 66.9 68.5
ro 51.2 58.8 65.4 65.0 64.8 65.1 68.8
ru 42.3 59.4 63.0 63.1 66.6 66.2 69.4
sl 46.0 57.8 63.1 64.0 65.3 65.4 68.8
sq 41.0 55.4 60.3 60.4 62.1 61.7 67.3
sv 57.2 63.1 69.8 69.6 69.3 68.9 72.4
sw 35.7 52.3 57.9 57.5 60.9 60.6 65.3
ta 37.2 53.0 55.4 55.7 60.7 60.9 65.8
te 38.7 49.0 51.6 53.6 56.8 58.5 61.6
th 49.4 60.0 63.5 66.5 65.2 65 71.5
tl 48.4 55.7 64.1 64.2 65.2 64.8 67.5
tr 46.7 58.5 63.7 63.4 62.7 62.8 69.4
ur 38.9 51.2 60.4 60.6 62.2 61.9 64.6
vi 46.9 55.1 59.0 59.2 63.0 63.3 67.6
zhc 34.7 56.1 52.0 53.9 64.2 63.9 66.3
zht 35.2 51.8 50.5 52.3 60.7 60.6 63.6

Avg 43.8 55.9 61.0 61.6 63.2 63.2 67.7

Table A1: EM accuracy comparison on MASSIVE

dataset. Avg reports the EM accuracy averaged across

the 50 non-English languages

Lang Zero-Shot Few-Shot TAF
TAF +
Few-Shot

LLM-T
(top-k)

LLM-T
(top-p)

Gold
(skyline)

de 54.4 62.8 75.0 75.1 73.7 74.0 78.5
es 57.8 69.5 74.9 74.5 75.2 75.4 82.9
fr 62.8 65.9 78.0 78.5 79.7 79.6 80.8
hi 42.3 55.3 63.0 63.9 72.5 72.3 78.5
th 42.1 53.9 60.8 62.9 66.8 68.0 77.0
en 84.1 84.0 85.2 85.0 85.2 85.1 85.4

Avg 51.9 61.5 70.3 71.0 73.6 73.9 79.5

Table A2: EM accuracy comparison on MTOP dataset.

Avg reports the EM accuracy averaged across the 5 non-

English languages

In Table A1, we present detailed baseline com-

parisons for all the 51 languages in the MASSIVE

dataset. Zero-Shot, Few-Shot, TAF, and TAF+Few-

Shot are the baselines described in Section 4. LLM-

T represents our method with top-k or top-p sam-

pling used while decoding the translated exam-

ples. Gold is the "full-shot" skyline which utilizes

the original human-translated datasets (§ 5.2). Ta-

ble A2 presents the same set of results for the six

languages in the MTOP dataset.

A.2 Role of decoding strategy and filtering

In Table A3 we present results for different de-

coding strategies and role of filtering inconsistent

examples as discussed in Section 5.3.

Decoding
de es fr hi th Avg

Strategy

Greedy 71.1 71.7 72.6 68.1 66.0 69.9

+ Filtering 72.2 73.5 74.8 71.5 67.4 71.9

Top-k Sampling (k = 40)

(#samples)

1 70.5 71.7 73.1 66.8 66.5 69.6

2 72.3 72.7 75.7 68.7 67.3 71.3

4 71.3 73.1 73.8 68.5 67.8 70.9

8 71.1 72.5 74.2 69.3 67.5 70.9

Top-k Sampling + Filtering (k = 40)

(#samples)

1 72.4 74.4 78 70.9 66.1 72.4

2 73.6 74.4 78.2 72.1 67.9 73.2

4 73.4 75.3 78.8 71.4 67.1 73.2

8 73.7 75.2 79.7 72.5 66.8 73.6

Top-p Sampling (p = 0.95)

(#samples)

1 70.1 71.5 74.3 66.9 67.2 70.0

2 71.4 72.1 74.5 68.8 67.2 70.8

4 71.1 72.8 76.4 69.0 66.0 71.1

8 71.9 72.7 74.2 70.0 68.4 71.4

Top-p Sampling + Filtering (p = 0.95)

(#samples)

1 72.0 75.2 78.9 71.6 68.1 73.2

2 73.7 75.2 79.5 72.0 67.6 73.6

4 73.4 75.3 79.0 72.1 67.7 73.5

8 74.0 75.4 79.6 72.3 68.0 73.9

Table A3: Impact of decoding strategy and filtering:

Generating multiple translations per English example

using top-k or top-p sampling followed by filtering in-

consistent examples offers superior downstream perfor-

mance compared to using greedy decoding or sampling

just one translation per example.
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