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Abstract

Models of neural machine translation are of-

ten from a discriminative family of encoder-

decoders that learn a conditional distribution

of a target sentence given a source sentence.

In this paper, we propose a variational model

to learn this conditional distribution for neu-

ral machine translation: a variational encoder-

decoder model that can be trained end-to-end.

Different from the vanilla encoder-decoder

model that generates target translations from

hidden representations of source sentences

alone, the variational model introduces a con-

tinuous latent variable to explicitly model un-

derlying semantics of source sentences and to

guide the generation of target translations. In

order to perform efficient posterior inference

and large-scale training, we build a neural

posterior approximator conditioned on both

the source and the target sides, and equip it

with a reparameterization technique to esti-

mate the variational lower bound. Experi-

ments on both Chinese-English and English-

German translation tasks show that the pro-

posed variational neural machine translation

achieves significant improvements over the

vanilla neural machine translation baselines.

1 Introduction

Neural machine translation (NMT) is an emerging

translation paradigm that builds on a single and

unified end-to-end neural network, instead of us-

ing a variety of sub-models tuned in a long training

pipeline. It requires a much smaller memory than

∗Corresponding author

phrase- or syntax-based statistical machine transla-

tion (SMT) that typically has a huge phrase/rule ta-

ble. Due to these advantages over traditional SMT

system, NMT has recently attracted growing inter-

ests from both deep learning and machine transla-

tion community (Kalchbrenner and Blunsom, 2013;

Cho et al., 2014; Sutskever et al., 2014; Bahdanau et

al., 2014; Luong et al., 2015a; Luong et al., 2015b;

Shen et al., 2015; Meng et al., 2015; Tu et al., 2016).

Current NMT models mainly take a discrimi-

native encoder-decoder framework, where a neu-

ral encoder transforms source sentence x into dis-

tributed representations, and a neural decoder gen-

erates the corresponding target sentence y according

to these representations1 (Cho et al., 2014; Sutskever

et al., 2014; Bahdanau et al., 2014). Typically, the

underlying semantic representations of source and

target sentences are learned in an implicit way in

this framework, which heavily relies on the atten-

tion mechanism (Bahdanau et al., 2014) to iden-

tify semantic alignments between source and target

words. Due to potential errors in these alignments,

the attention-based context vector may be insuffi-

cient to capture the entire meaning of a source sen-

tence, hence resulting in undesirable translation phe-

nomena (Tu et al., 2016).

Unlike the vanilla encoder-decoder framework,

we model underlying semantics of bilingual sen-

tence pairs explicitly. We assume that there exists

a continuous latent variable z from this underlying

semantic space. And this variable, together with x,

1In this paper, we use bold symbols to denote variables, and

plain symbols to denote their values. Without specific state-

ment, all variables are multivariate.
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Figure 1: Illustration of VNMT as a directed graph.

We use solid lines to denote the generative model

pθ(z|x)pθ(y|z,x), and dashed lines to denote the varia-

tional approximation qφ(z|x) to the intractable posterior

p(z|x,y). Both variational parameters φ and generative

model parameters θ are learned jointly.

guides the translation process, i.e. p(y|z,x). With

this assumption, the original conditional probability

evolves into the following formulation:

p(y|x) =

∫

z

p(y, z|x)dz =

∫

z

p(y|z,x)p(z|x)dz

(1)

This brings in the benefits that the latent variable z

can serve as a global semantic signal that is com-

plementary to the attention-based context vector for

generating good translations when the model learns

undesirable attentions. However, although this la-

tent variable enables us to explicitly model under-

lying semantics of translation pairs, the incorpora-

tion of it into the above probabilistic model has two

challenges: 1) the posterior inference in this model

is intractable; 2) large-scale training, which lays

the ground for the data-driven NMT, is accordingly

problematic.

In order to address these issues, we propose a vari-

ational encoder-decoder model to neural machine

translation (VNMT), motivated by the recent suc-

cess of variational neural models (Rezende et al.,

2014; Kingma and Welling, 2014). Figure 1 illus-

trates the graphic representation of VNMT. As deep

neural networks are capable of learning highly non-

linear functions, we employ them to fit the latent-

variable-related distributions, i.e. the prior and pos-

terior, to make the inference tractable. The former is

modeled to be conditioned on the source side alone

pθ(z|x), because the source and target part of a sen-

tence pair usually share the same semantics so that

the source sentence should contain the prior infor-

mation for inducing the underlying semantics. The

latter, instead, is approximated from all observed

variables qφ(z|x,y), i.e. both the source and the tar-

get sides. In order to efficiently train parameters,

we apply a reparameterization technique (Rezende

et al., 2014; Kingma and Welling, 2014) on the vari-

ational lower bound. This enables us to use standard

stochastic gradient optimization for training the pro-

posed model. Specifically, there are three essential

components in VNMT (The detailed architecture is

illustrated in Figure 2):

• A variational neural encoder transforms

source/target sentence into distributed repre-

sentations, which is the same as the encoder of

NMT (Bahdanau et al., 2014) (see section 3.1).

• A variational neural inferer infers the repre-

sentation of z according to the learned source

representations (i.e. pθ(z|x)) together with the

target ones (i.e. qφ(z|x,y)), where the repa-

rameterization technique is employed (see sec-

tion 3.2).

• And a variational neural decoder integrates the

latent representation of z to guide the genera-

tion of target sentence (i.e. p(y|z,x)) together

with the attention mechanism (see section 3.3).

Augmented with the posterior approximation and

reparameterization, our VNMT can still be trained

end-to-end. This makes our model not only effi-

cient in translation, but also simple in implementa-

tion. To train our model, we employ the conven-

tional maximum likelihood estimation. Experiments

on both Chinese-English and English-German trans-

lation tasks show that VNMT achieves significant

improvements over several strong baselines.

2 Background: Variational Autoencoder

This section briefly reviews the variational autoen-

coder (VAE) (Kingma and Welling, 2014; Rezende

et al., 2014). Given an observed variable x, VAE in-

troduces a continuous latent variable z, and assumes

that x is generated from z, i.e.,

pθ(x, z) = pθ(x|z)pθ(z) (2)

where θ denotes the parameters of the model. pθ(z)
is the prior, e.g, a simple Gaussian distribution.

pθ(x|z) is the conditional distribution that models

the generation procedure, typically estimated via a

deep non-linear neural network.

Similar to our model, the integration of z in Eq.

(2) imposes challenges on the posterior inference as
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Figure 2: Neural architecture of VNMT. We use blue, gray and red color to indicate the encoder-related (x,y), under-

lying semantic (z) and decoder-related (y) representation respectively. The yellow lines show the flow of information

employed for target word prediction. The dashed red line highlights the incorporation of latent variable z into target

prediction. f and e represent the source and target language respectively.

well as large-scale learning. To tackle these prob-

lems, VAE adopts two techniques: neural approxi-

mation and reparameterization.

Neural Approximation employs deep neural net-

works to approximate the posterior inference model

qφ(z|x), where φ denotes the variational parame-

ters. For the posterior approximation, VAE regards

qφ(z|x) as a diagonal GaussianN (µ, diag(σ2)), and

parameterizes its mean µ and variance σ2 with deep

neural networks.

Reparameterization reparameterizes z as a func-

tion of µ and σ, rather than using the standard

sampling method. In practice, VAE leverages the

“location-scale” property of Gaussian distribution,

and uses the following reparameterization:

z̃ = µ+ σ ⊙ ǫ (3)

where ǫ is a standard Gaussian variable that plays

a role of introducing noises, and ⊙ denotes an

element-wise product.

With these two techniques, VAE tightly incor-

porates both the generative model pθ(x|z) and the

posterior inference model qφ(z|x) into an end-to-

end neural network. This facilitates its optimiza-

tion since we can apply the standard backpropaga-

tion to compute the gradient of the following varia-

tional lower bound:

LVAE(θ, φ;x) =− KL(qφ(z|x)||pθ(z))

+Eqφ(z|x)[log pθ(x|z)] ≤ log pθ(x)
(4)

KL(Q||P ) is the Kullback-Leibler divergence be-

tween Q and P . Intuitively, VAE can be considered

as a regularized version of the standard autoencoder.

It makes use of the latent variable z to capture the

variations ǫ in the observed variable x.

3 Variational Neural Machine Translation

Different from previous work, we introduce a latent

variable z to model the underlying semantic space

as a global signal for translation. Formally, given

the definition in Eq. (1) and Eq. (4), the varia-

tional lower bound of VNMT can be formulated as

follows:

LVNMT(θ, φ;x,y) = −KL(qφ(z|x,y)||pθ(z|x))

+Eqφ(z|x,y)[log pθ(y|z,x)] (5)

where pθ(z|x) is our prior model, qφ(z|x,y) is our

posterior approximator, and pθ(y|z,x) is the de-

coder with the guidance from z. Based on this

formulation, VNMT can be decomposed into three

components, each of which is modeled by a neu-

ral network: a variational neural inferer that models

pθ(z|x) and qφ(z|x,y) (see part (b) in Figure 2), a

variational neural decoder that models pθ(y|z,x)
(see part (c) in Figure 2), and a variational neural

encoder that provides distributed representations of

a source/target sentence for the above two modules

(see part (a) in Figure 2). Following the information

flow illustrated in Figure 2, we describe part (a), (b)

and (c) successively.

3.1 Variational Neural Encoder

As shown in Figure 2 (a), the variational neural en-

coder aims at encoding an input sequence (w1, w2,



. . . , wT ) into continuous vectors. In this paper,

we adopt the encoder architecture proposed by Bah-

danau et al. (2014), which is a bidirectional RNN

with a forward and backward RNN. The forward

RNN reads the sequence from left to right while

the backward RNN in the opposite direction (see the

parallel arrows in Figure 2 (a)):

−→
h i = RNN(

−→
h i−1, Ewi

)
←−
h i = RNN(

←−
h i+1, Ewi

)
(6)

where Ewi
∈ R

dw is the embedding for word wi,

and
−→
h i,
←−
h i are hidden states generated in two direc-

tions. Following Bahdanau et al. (2014), we employ

the Gated Recurrent Unit (GRU) as our RNN unit

due to its capacity in capturing long-distance depen-

dencies.

We further concatenate each pair of hidden states

at each time step to build a set of annotation vec-

tors (h1, h2, . . . , hT ), h
T
i =

[−→
h T

i ;
←−
h T

i

]

. In this

way, each annotation vector hi encodes information

about the i-th word with respect to all the other sur-

rounding words in the sequence. Therefore, these

annotation vectors are desirable for the following

modeling.

We use this encoder to represent both the source

sentence {xi}
Tf

i=1 and the target sentence {yi}
Te

i=1

(see the blue color in Figure 2). Accordingly, our

encoder generates both the source annotation vec-

tors {hi}
Tf

i=1 ∈ R
2df and the target annotation vec-

tors {h′
i}

Te

i=1 ∈ R
2de . The source vectors flow into

the inferer and decoder while the target vectors the

posterior approximator.

3.2 Variational Neural Inferer

A major challenge of variational models is how to

model the latent-variable-related distributions. In

VNMT, we employ neural networks to model both

the prior pθ(z|x) and the posterior qφ(z|x,y), and

let them subject to a multivariate Gaussian distri-

bution with a diagonal covariance structure.2 As

shown in Figure 1, these two distributions mainly

differ in their conditions.

2The reasons of choosing Gaussian distribution are twofold:

1) it is a natural choice for modeling continuous variables; 2) it

belongs to the family of “location-scale” distributions, which is

required for the following reparameterization.

3.2.1 Neural Posterior Approximator

Exactly modeling the true posterior p(z|x,y) ex-

actly usually intractable. Therefore, we adopt an

approximation method to simplify the posterior in-

ference. Conventional models typically employ the

mean-field approaches. However, a major limitation

of this approach is its inability to capture the true

posterior of z due to its oversimplification. Follow-

ing the spirit of VAE, we use neural networks for

better approximation in this paper, and assume the

approximator has the following form:

qφ(z|x,y) = N (z;µ(x,y), σ(x,y)2I) (7)

The mean µ and s.d. σ of the approximate poste-

rior are the outputs of neural networks based on the

observed variables x and y as shown in Figure 2 (b).

Starting from the variational neural encoder, we

first obtain the source- and target-side representa-

tion via a mean-pooling operation over the annota-

tion vectors, i.e. hf = 1
Tf

∑Tf

i hi, he =
1
Te

∑Te

i h′
i.

With these representations, we perform a non-linear

transformation that projects them onto our con-

cerned latent semantic space:

h′
z = g(W (1)

z [hf ;he] + b(1)z ) (8)

where W
(1)
z ∈ R

dz×2(df+de), b
(1)
z ∈ R

dz is the pa-

rameter matrix and bias term respectively, dz is the

dimensionality of the latent space, and g(·) is an

element-wise activation function, which we set to be

tanh(·) throughout our experiments.

In this latent space, we obtain the abovementioned

Gaussian parameters µ and log σ2 through linear re-

gression:

µ = Wµh
′
z + bµ, log σ2 = Wσh

′
z + bσ (9)

where µ, log σ2 are both dz-dimension vectors.

3.2.2 Neural Prior Model

Different from the posterior, we model (rather

than approximate) the prior as follows:

pθ(z|x) = N (z;µ′(x), σ′(x)2I) (10)

We treat the mean µ′ and s.d. σ′ of the prior as neural

functions of source sentence x alone. This is sound

and reasonable because bilingual sentences are se-

mantically equivalent, suggesting that either y or x



is capable of inferring the underlying semantics of

sentence pairs, i.e., the representation of latent vari-

able z.

The neural model for the prior pθ(z|x) is the

same as that (i.e. Eq (8) and (9)) for the posterior

qφ(z|x,y), except for the absence of he. Besides,

the parameters for the prior are independent of those

for the posterior.

To obtain a representation for latent variable z, we

employ the same technique as the Eq. (3) and repa-

rameterized it as hz = µ+ σ ⊙ ǫ, ǫ∼N (0, I). Dur-

ing decoding, however, due to the absence of target

sentence y, we set hz to be the mean of pθ(z|x), i.e.,

µ′. Intuitively, the reparameterization bridges the

gap between the generation model pθ(y|z,x) and

the inference model qφ(z|x,y). In other words, it

connects these two neural networks. This is impor-

tant since it enables the stochastic gradient optimiza-

tion via standard backpropagation.

We further project the representation of latent

variable hz onto the target space for translation:

h′
e = g(W (2)

z hz + b(2)z ) (11)

where h′
e ∈ R

d′e . The transformed h′
e is then in-

tegrated into our decoder. Notice that because of

the noise from ǫ, the representation h′
e is not fixed

for the same source sentence and model parameters.

This is crucial for VNMT to learn to avoid overfit-

ting.

3.3 Variational Neural Decoder

Given the source sentence x and the latent variable

z, our decoder defines the probability over transla-

tion y as a joint probability of ordered conditionals:

p(y|z,x) =
Te
∏

j=1

p(yj |y<j , z,x) (12)

where p(yj |y<j ,z,x) = g′(yj−1, sj−1, cj)

The feed forward model g′(·) (see the yellow arrows

in Figure 2) and context vector cj =
∑

i αjihi (see

the “⊕” in Figure 2) are the same as (Bahdanau et

al., 2014). The difference between our decoder and

Bahdanau et al.’s decoder (2014) lies in that in ad-

dition to the context vector, our decoder integrates

the representation of the latent variable, i.e. h′
e, into

the computation of sj , which is denoted by the bold

dashed red arrow in Figure 2 (c).

Formally, the hidden state sj in our decoder is cal-

culated by3

sj = (1− uj)⊙ sj−1 + uj ⊙ s̃j ,

s̃j = tanh(WEyj + U [rj ⊙ sj−1] + Ccj + V h′
e)

uj = σ(WuEyj + Uusj−1 + Cucj + Vuh
′
e)

rj = σ(WrEyj + Ursj−1 + Crcj + Vrh
′
e)

Here, rj , uj , s̃j denotes the reset gate, update gate

and candidate activation in GRU respectively, and

Eyj ∈ R
dw is the word embedding for target word.

W, Wu, Wr ∈ R
de×dw , U, Uu, Ur ∈ R

de×de , C, Cu,

Cr ∈ R
de×2df , and V, Vu, Vr ∈ R

de×d′e are parame-

ter weights. The initial hidden state s0 is initialized

in the same way as Bahdanau et al. (2014) (see the

arrow to s0 in Figure 2).

In our model, the latent variable can affect the rep-

resentation of hidden state sj through the gate be-

tween rj and uj . This allows our model to access the

semantic information of z indirectly since the pre-

diction of yj+1 depends on sj . In addition, when the

model learns wrong attentions that lead to bad con-

text vector cj , the semantic representation he
′ can

help to guide the translation process .

3.4 Model Training

We use the Monte Carlo method to approximate

the expectation over the posterior in Eq. (5), i.e.

Eqφ(z|x,y)[·] ≃
1
L

∑L
l=1 log pθ(y|x,h

(l)
z ), where L is

the number of samples. The joint training objective

for a training instance (x,y) is defined as follows:

L(θ, φ) ≃ −KL(qφ(z|x,y)||pθ(z|x))

+
1

L

L
∑

l=1

Te
∑

j=1

log pθ(yj |y<j ,x,h
(l)
z ) (13)

where h(l)
z = µ+ σ ⊙ ǫ(l) and ǫ(l) ∼ N (0, I)

The first term is the KL divergence between two

Gaussian distributions which can be computed and

differentiated without estimation (see (Kingma and

Welling, 2014) for details). And the second term

is the approximate expectation, which is also dif-

ferentiable. Suppose that L is 1 (which is used in

our experiments), then our second term will be de-

generated to the objective of conventional NMT. In-

tuitively, VNMT is exactly a regularized version of

3We omit the bias term for clarity.



System MT05 MT02 MT03 MT04 MT06 MT08 AVG

Moses 33.68 34.19 34.39 35.34 29.20 22.94 31.21

GroundHog 31.38 33.32 32.59 35.05 29.80 22.82 30.72

VNMT w/o KL 31.40 33.50 32.92 34.95 28.74 22.07 30.44

VNMT 32.25 34.50++ 33.78++ 36.72⇑++ 30.92⇑++ 24.41↑++ 32.07

Table 1: BLEU scores on the NIST Chinese-English translation task. AVG = average BLEU scores on test sets. We

highlight the best results in bold for each test set. “↑/⇑”: significantly better than Moses (p < 0.05/p < 0.01); “+/++”:

significantly better than GroundHog (p < 0.05/p < 0.01);

NMT, where the introduced noise ǫ increases its ro-

bustness, and reduces overfitting. We verify this

point in our experiments.

Since the objective function in Eq. (13) is differ-

entiable, we can optimize the model parameter θ and

variational parameter φ jointly using standard gradi-

ent ascent techniques.

4 Experiments

4.1 Setup

To evaluate the effectiveness of the proposed

VNMT, we conducted experiments on both Chinese-

English and English-German translation tasks. Our

Chinese-English training data4 consists of 2.9M sen-

tence pairs, with 80.9M Chinese words and 86.4M

English words respectively. We used the NIST

MT05 dataset as the development set, and the NIST

MT02/03/04/06/08 datasets as the test sets for the

Chinese-English task. Our English-German train-

ing data5 consists of 4.5M sentence pairs with 116M

English words and 110M German words6. We used

the newstest2013 (3000 sentences) as the develop-

ment set, and the newstest2014 (2737 sentences)

as the test set for English-German translation. We

employed the case-insensitive BLEU-4 (Papineni et

al., 2002) metric to evaluate translation quality, and

paired bootstrap sampling (Koehn, 2004) for signif-

icance test.

We compared our model against two state-of-the-

art SMT and NMT systems:

• Moses (Koehn et al., 2007): a phrase-based

SMT system.

4This corpus consists of LDC2003E14, LDC2004T07,

LDC2005T06, LDC2005T10 and LDC2004T08 (Hong Kong

Hansards/Laws/News).
5This corpus is from the WMT’14 training data (Jean et al.,

2015; Luong et al., 2015a)
6The preprocessed data can be found and downloaded from

http://nlp.stanford.edu/projects/nmt/

• GroundHog (Bahdanau et al., 2014): an

attention-based NMT system.

Additionally, we also compared with a variant of

VNMT, which does not contain the KL part in the

objective (VNMT w/o KL). This is achieved by set-

ting hz to µ′.

For Moses, we adopted all the default settings ex-

cept for the language model. We trained a 4-gram

language model on the Xinhua section of the English

Gigaword corpus (306M words) using the SRILM7

toolkit with modified Kneser-Ney smoothing. Im-

portantly, we used all words in the vocabulary.

For GroundHog, we set the maximum length

of training sentences to be 50 words, and pre-

served the most frequent 30K (Chinese-English) and

50K (English-German) words as both the source

and target vocabulary , covering approximately

98.9%/99.2% and 97.3%/93.3% on the source and

target side of the two parallel corpora respectively .

All other words were represented by a specific to-

ken “UNK”. Following Bahdanau et al. (2014), we

set dw = 620, df = 1000, de = 1000, and M = 80.

All other settings are the same as the default config-

uration (for RNNSearch). During decoding, we used

the beam-search algorithm, and set beam size to 10.

For VNMT, we initialized its parameters with the

trained RNNSearch model. The settings of our

model are the same as that of GroundHog, except

for some parameters specific to VNMT. Following

VAE, we set the sampling number L = 1. Addi-

tionally, we set d′e = dz = 2df = 2000 according

to preliminary experiments. We used the Adadelta

algorithm for model training with ρ = 0.95. With

regard to the source and target encoders, we shared

their recurrent parameters but not word embeddings.

We implemented our VNMT based on Ground-

Hog8. Both NMT systems are trained on a Telsa K40

7http://www.speech.sri.com/projects/srilm/download.html
8Our code is publicly available at

http://nlp.stanford.edu/projects/nmt/


System MT05 MT02 MT03 MT04 MT06 MT08

GroundHog 18.23 22.20 20.19 21.67 19.11 13.41

VNMT 21.31 26.02 23.78 25.81 21.81 15.59

Table 2: BLEU scores on the new dataset. All improvements are significant at p < 0.01.

System Architecture BLEU

Existing end-to-end NMT systems

Jean et al. (2015) RNNSearch 16.46

Jean et al. (2015) RNNSearch + unk replace 18.97

Jean et al. (2015) RNNsearch + unk replace + large vocab 19.40

Luong et al. (2015a) LSTM with 4 layers + dropout + local att. + unk replace 20.90

Our end-to-end NMT systems

this work

RNNSearch 16.40

VNMT 17.13++

VNMT + unk replace 19.58++

Table 3: BLEU scores on the English-German translation task.
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Figure 3: BLEU scores on different groups of source

sentences in terms of their length.

GPU. In one hour, GroundHog processes about 1100

batches, while our VNMT processes 630 batches.

4.2 Results on Chinese-English Translation

Table 1 summarizes the BLEU scores of different

systems on the Chinese-English translation tasks.

Clearly VNMT significantly improves translation

quality in terms of BLEU on most cases, and ob-

tains the best average results that gain 0.86 and 1.35

BLEU points over Moses and GroundHog respec-

tively. Besides, without the KL objective, VNMT

w/o KL obtains even worse results than GroundHog.

These results indicate the following two points: 1)

explicitly modeling underlying semantics by a latent

variable indeed benefits neural machine translation,

and 2) the improvements of our model are not from

enlarging the network.

https://github.com/DeepLearnXMU/VNMT.

4.3 Results on Long Sentences

We further testify VNMT on long sentence transla-

tion where the vanilla NMT usually suffers from at-

tention failures (Tu et al., 2016; Bentivogli et al.,

2016). We believe that the global latent variable can

play an important role on long sentence translation.

Our first experiment is carried out on 6 disjoint

groups according to the length of source sentences in

our test sets. Figure 3 shows the BLEU scores of two

neural models. We find that the performance curve

of our VNMT model always appears to be on top of

that of GroundHog with a certain margin. Specif-

ically, on the final group with the longest source

sentences, our VNMT obtains the biggest improve-

ment (3.55 BLEU points). Overall, these obvious

improvements on all groups in terms of the length of

source sentences indicate that the global guidance

from the latent variable benefits our VNMT model.

Our second experiment is carried out on a syn-

thetic dataset where each new source sentence is

a concatenation of neighboring source sentences in

the original test sets. As a result, the average length

of source sentences in the new dataset (> 50) is

almost twice longer than the original one. Trans-

lation results is summarized in Table 2, where our

VNMT obtains significant improvements on all new

test sets. This further demonstrates the advantage of

introducing the latent variable.

4.4 Results on English-German Translation

Table 3 shows the results on English-German trans-

lation. We also provide several existing NMT sys-



Source

两国官员确定了今后会谈的日程和模式 ,建立起进行持续对话的机

制 ,此举标志着巴印对话进程在中断两年后重新启动 ,为两国逐

步 解决 包括 克什米 尔 争端 在内 的 所有 悬而未决 的 问题 奠定 了 基

础 ,体现了双方可贵的和平诚意。

Reference

the officials of the two countries have established the mechanism for continued

dialogue down the road, including a confirmed schedule and model of the talks.

this symbolizes the restart of the dialogue process between pakistan and india

after an interruption of two years and has paved a foundation for the two coun-

tries to sort out gradually all the questions hanging in the air, including the

kashmir dispute. it is also a realization of their precious sincerity for peace.

Moses

officials of the two countries set the agenda for future talks , and the pattern of a

continuing dialogue mechanism . this marks a break in the process of dialogue

between pakistan and india , two years after the restart of the two countries

including kashmir dispute to gradually solve all the outstanding issues have laid

the foundation of the two sides showed great sincerity in peace .

GroundHog

the two countries have decided to set up a mechanism for conducting continuous

dialogue on the agenda and mode of the talks . this indicates that the ongoing

dialogue between the two countries has laid the foundation for the gradual set-

tlement of all outstanding issues including the dispute over kashmir .

VNMT

the officials of the two countries set up a mechanism for holding a continuous

dialogue on the agenda and mode of the future talks, and this indicates that the

ongoing dialogue between pakistan and india has laid a foundation for resolving

all outstanding issues , including the kashmir disputes , and this serves as a

valuable and sincere peace sincerity .

Table 4: Translation examples of different systems. We highlight important parts in red color.

tems that use the same training, development and

testing data. The results show that VNMT signifi-

cantly outperforms GroundHog and achieves a sig-

nificant gain of 0.73 BLEU points (p < 0.01). With

unknown word replacement (Jean et al., 2015; Lu-

ong et al., 2015a), VNMT reaches the performance

level that is comparable to the previous state-of-the-

art NMT results.

4.5 Translation Analysis

Table 4 shows a translation example that helps un-

derstand the advantage of VNMT over NMT . As

the source sentence in this example is long (more

than 40 words), the translation generated by Moses

is relatively messy and incomprehensible. In con-

trast, translations generated by neural models (both

GroundHog and VNMT) are much more fluent and

comprehensible. However, there are essential differ-

ences between GroundHog and our VNMT. Specifi-

cally, GroundHog does not translate the phrase “官

员” at the beginning of the source sentence. The

translation of the clause “体现了双方可贵的和

平诚意。” at the end of the source sentence is com-

pletely lost. In contrast, our VNMT model does not

miss or mistake these fragments and can convey the

meaning of entire source sentence to the target side.

From these examples, we can find that although

attention networks can help NMT trace back to rel-

evant parts of source sentences for predicting tar-

get translations, capturing the semantics of entire

sentences still remains a big challenge for neural

machine translation. Since NMT implicitly models

variable-length source sentences with fixed-size hid-

den vectors, some details of source sentences (e.g.,

the red sequence of words in Table 4) may not be

encoded in these vectors at all. VNMT seems to be

able to capture these details through a latent vari-

able that explicitly model underlying semantics of

source sentences. The promising results suggest that

VNMT provides a new mechanism to deal with sen-

tence semantics.

5 Related Work

5.1 Neural Machine Translation

Neural machine translation starts from the sequence

to sequence learning, where Sutskever et al. (2014)

employ two multilayered Long Short-Term Memory

(LSTM) models that first encode a source sentence



into a single vector and then decode the translation

word by word until a special end token is gener-

ated. In order to deal with issues caused by encoding

all source-side information into a fixed-length vec-

tor, Bahdanau et al. (2014) introduce attention-based

NMT that aims at automatically concentrating on

relevant source parts for predicting target words dur-

ing decoding. The incorporation of attention mech-

anism allows NMT to cope better with long sen-

tences, and makes it really comparable to or even

superior to conventional SMT.

Following the success of attentional NMT, a num-

ber of approaches and models have been proposed

for NMT recently, which can be grouped into differ-

ent categories according to their motivations: deal-

ing with rare words or large vocabulary (Jean et al.,

2015; Luong et al., 2015b; Sennrich et al., 2015),

learning better attentional structures (Luong et al.,

2015a), integrating SMT techniques (Cheng et al.,

2015; Shen et al., 2015; Feng et al., 2016; Tu et al.,

2016), memory network (Meng et al., 2015), etc. All

these models are designed within the discriminative

encoder-decoder framework, leaving the explicit ex-

ploration of underlying semantics with a variational

model an open problem.

5.2 Variational Neural Model

In order to perform efficient inference and learn-

ing in directed probabilistic models on large-scale

dataset, Kingma and Welling (2014) as well as

Rezende et al. (2014) introduce variational neural

networks. Typically, these models utilize an neural

inference model to approximate the intractable pos-

terior, and optimize model parameters jointly with a

reparameterized variational lower bound using the

standard stochastic gradient technique. This ap-

proach is of growing interest due to its success in

various tasks.

Kingma et al. (2014) revisit the approach to semi-

supervised learning with generative models and fur-

ther develop new models that allow effective gen-

eralization from a small labeled dataset to a large

unlabeled dataset. Chung et al. (2015) incorporate

latent variables into the hidden state of a recurrent

neural network, while Gregor et al. (2015) combine

a novel spatial attention mechanism that mimics the

foveation of human eyes, with a sequential varia-

tional auto-encoding framework that allows the it-

erative construction of complex images. Very re-

cently, Miao et al. (2015) propose a generic varia-

tional inference framework for generative and con-

ditional models of text.

The most related work is that of Bowman et

al. (2015), where they develop a variational autoen-

coder for unsupervised generative language model-

ing. The major difference is that they focus on the

monolingual language model, while we adapt this

technique to bilingual translation. Although varia-

tional neural models have been widely used in NLP

tasks and the variational decoding has been investi-

gated for SMT (Li et al., 2009), the adaptation and

utilization of variational neural model to neural ma-

chine translation, to the best of our knowledge, has

never been investigated before.

6 Conclusion and Future Work

In this paper, we have presented a variational model

for neural machine translation that incorporates a

continuous latent variable to model the underlying

semantics of sentence pairs. We approximate the

posterior distribution with neural networks and repa-

rameterize the variational lower bound. This en-

ables our model to be an end-to-end neural network

that can be optimized through the stochastic gradi-

ent algorithms. Comparing with the conventional

attention-based NMT, our model is better at trans-

lating long sentences. It also greatly benefits from

a special regularization term brought with this la-

tent variable. Experiments on Chinese-English and

English-German translation tasks verified the effec-

tiveness of our model.

In the future, since the latent variable in our

model is at the sentence level, we want to explore

more fine-grained latent variables for neural ma-

chine translation, such as the Recurrent Latent Vari-

able Model (Chung et al., 2015). We are also inter-

ested in applying our model to other similar tasks.
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jar, Alexandra Constantin, and Evan Herbst. 2007.

Moses: Open source toolkit for statistical machine

translation. In Proc. of ACL, pages 177–180.

[Koehn2004] Philipp Koehn. 2004. Statistical signif-

icance tests for machine translation evaluation. In

Proc. of EMNLP.

[Li et al.2009] Zhifei Li, Jason Eisner, and Sanjeev Khu-

danpur. 2009. Variational decoding for statistical ma-

chine translation. In Proc. of ACL, pages 593–601,

August.

[Luong et al.2015a] Thang Luong, Hieu Pham, and

Christopher D. Manning. 2015a. Effective approaches

to attention-based neural machine translation. In Proc.

of EMNLP, pages 1412–1421, September.

[Luong et al.2015b] Thang Luong, Ilya Sutskever, Quoc

Le, Oriol Vinyals, and Wojciech Zaremba. 2015b.

Addressing the rare word problem in neural machine

translation. In Proc. of ACL-IJCNLP, pages 11–19,

July.

[Meng et al.2015] F. Meng, Z. Lu, Z. Tu, H. Li, and

Q. Liu. 2015. A Deep Memory-based Architecture

for Sequence-to-Sequence Learning. ArXiv e-prints,

June.

[Miao et al.2015] Y. Miao, L. Yu, and P. Blunsom. 2015.

Neural Variational Inference for Text Processing.

ArXiv e-prints, November.

[Papineni et al.2002] Kishore Papineni, Salim Roukos,

Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method

for automatic evaluation of machine translation. In

Proc. of ACL, pages 311–318.

[Rezende et al.2014] Danilo Jimenez Rezende, Shakir

Mohamed, and Daan Wierstra. 2014. Stochastic back-

propagation and approximate inference in deep gener-

ative models. In Proc. of ICML, pages 1278–1286.

[Sennrich et al.2015] R. Sennrich, B. Haddow, and

A. Birch. 2015. Neural Machine Translation of Rare

Words with Subword Units. ArXiv e-prints, August.

[Shen et al.2015] S. Shen, Y. Cheng, Z. He, W. He,

H. Wu, M. Sun, and Y. Liu. 2015. Minimum Risk

Training for Neural Machine Translation. ArXiv e-

prints, December.



[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and

Quoc V. Le. 2014. Sequence to sequence learning

with neural networks. CoRR, abs/1409.3215.

[Tu et al.2016] Zhaopeng Tu, Zhengdong Lu, Yang Liu,

Xiaohua Liu, and Hang Li. 2016. Coverage-based

neural machine translation. CoRR, abs/1601.04811.


	1 Introduction
	2 Background: Variational Autoencoder
	3 Variational Neural Machine Translation
	3.1 Variational Neural Encoder
	3.2 Variational Neural Inferer
	3.2.1 Neural Posterior Approximator
	3.2.2 Neural Prior Model

	3.3 Variational Neural Decoder
	3.4 Model Training

	4 Experiments
	4.1 Setup
	4.2 Results on Chinese-English Translation
	4.3 Results on Long Sentences
	4.4 Results on English-German Translation
	4.5 Translation Analysis

	5 Related Work
	5.1 Neural Machine Translation
	5.2 Variational Neural Model

	6 Conclusion and Future Work

